

A Proposal for an EUV light source using transverse flow CO₂ lasers

<u>Yoichi Tanino</u>, Junichi Nishimae, and Shuichi Fujikawa Mitsubishi Electric Corporation, 8-1-1, Tsukagushi-Hommachi, Amagasaki, Hyogo 661-8661, Japan phone: +81-6-6497-7111 e-mail: Tanino.Yoichi@ap.MitsubishiElectric.co.jp

We carried out a basic design of a 40-kW pulse CO₂ laser system for EUV light source using transverse flow amplifiers based on a preliminary experiment. The authors conclude that the transverse flow CO₂ laser is a promising candidate for an amplifier in the laser-produced-plasma (LPP) EUV light source.

Efficient, stable laser

- Transverse flow CO₂ laser is suitable for amplifiers because:
 - Wider laser gas flow channels excellent in cooling enable to use lower pressure gas, accordingly produce a higher gain in principle compared with axial flow.
 - Transverse flow laser offers simple optical configurations.

Output power versus input laser power

[1] H. Hoshino et al., Proc. SPIE **6921**, 692131 (2008).

Preliminary experiment: transverse flow amp.

- A commercial 6-kW transverse flow CO₂ laser was used.
- We carried out an amplification test at <u>a 100% duty cycle</u> of pumping discharge.
- The measured output power was 1.9 kW with the optical input power of 13 W.

Basic design of 40 kW pulse CO₂ laser

- The basic design of the system using transverse flow amplifiers was based on the preliminary experiment.
- We are going to use six amplifier units to achieve 40 kW.
- The electrical discharge power for each unit is 100 kW.

Roa	adm	ap								
	2011		2012				2013			
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	1 st amp unit Design & Prototype			4 units (25-kW) Prototype & Test				6 units (40-kW) Prototype & Test		

Acknowledgements:

This work was partly supported by the New Energy and Industrial Technology Development Organization, NEDO, Japan.

